30
/
AIzaSyAYiBZKx7MnpbEhh9jyipgxe19OcubqV5w
April 1, 2024
494475
42141
2

feb 25, 600000000 - Sun increases luminosity and disrupts carbon-silicate cycle, drastic climate change

Description:

The Sun's increasing luminosity begins to disrupt the carbonate–silicate cycle; higher luminosity increases weathering of surface rocks, which traps carbon dioxide in the ground as carbonate. As water evaporates from the Earth's surface, rocks harden, causing plate tectonics to slow and eventually stop. Without volcanoes to recycle carbon into the Earth's atmosphere, carbon dioxide levels begin to fall. By this time, carbon dioxide levels will fall to the point at which C3 photosynthesis is no longer possible. All plants that utilize C3 photosynthesis (~99 percent of present-day species) will die.

With no water to lubricate them, plate tectonics would very likely stop and the most visible signs of geological activity would be shield volcanoes located above mantle hotspots. In these arid conditions the planet may retain some microbial and possibly even multi-cellular life. Most of these microbes will be halophiles and life could find too refuge in the atmosphere as has been proposed that could have happened on Venus. However, the increasingly extreme conditions will likely lead to the extinction of the prokaryotes between 1.6 billion years and 2.8 billion years from now, with the last of them living in residual ponds of water at high latitudes and heights or in caverns with trapped ice; underground life, however, could last longer. What happens next depends on the level of tectonic activity. A steady release of carbon dioxide by volcanic eruption could cause the atmosphere to enter a "supergreenhouse" state like that of the planet Venus. But as stated above without surface water, plate tectonics would probably come to a halt and most of the carbonates would remain securely buried until the Sun became a red giant and its increased luminosity heated the rock to the point of releasing the carbon dioxide.

As temperatures continue to rise, the last animal life will be driven back toward the poles, and possibly underground. They would become primarily active during the polar night, aestivating during the polar day due to the intense heat. Much of the surface would become a barren desert and life would primarily be found in the oceans. However, due to a decrease of the amount or organic matter coming to the oceans from the land as well as oxygen in the water, life would disappear there too following a similar path to that on Earth's surface. This process would start with the loss of freshwater species and conclude with invertebrates, particularly those that do not depend on living plants such as termites or those near hydrothermal vents such as worms of the genus Riftia. As a result of these processes, multi-cellular lifeforms may be extinct in about 800 million years, and eukaryotes in 1.3 billion years, leaving only the prokaryotes.

In their work The Life and Death of Planet Earth, authors Peter D. Ward and Donald Brownlee have argued that some form of animal life may continue even after most of the Earth's plant life has disappeared. Ward and Brownlee use fossil evidence from the Burgess Shale in British Columbia, Canada, to determine the climate of the Cambrian Explosion, and use it to predict the climate of the future when rising global temperatures caused by a warming Sun and declining oxygen levels result in the final extinction of animal life. Initially, they expect that some insects, lizards, birds and small mammals may persist, along with sea life. However, without oxygen replenishment by plant life, they believe that animals would probably die off from asphyxiation within a few million years. Even if sufficient oxygen were to remain in the atmosphere through the persistence of some form of photosynthesis, the steady rise in global temperature would result in a gradual loss of biodiversity.

The loss of plant life will also result in the eventual loss of oxygen as well as ozone due to the respiration of animals, chemical reactions in the atmosphere, and volcanic eruptions, meaning less attenuation of DNA-damaging ultraviolet radiation, as well as the death of animals; the first animals to disappear would be large mammals, followed by small mammals, birds, amphibians and large fish, reptiles and small fish, and finally invertebrates. Before this happened it's expected that life would concentrate at refugia of lower temperature such as high elevations where less land surface area is available, thus restricting population sizes. Smaller animals would survive better than larger ones because of lesser oxygen requirements, while birds would fare better than mammals thanks to their ability to travel large distances looking for colder temperatures.

When the levels of carbon dioxide fall to the limit where photosynthesis is barely sustainable, the proportion of carbon dioxide in the atmosphere is expected to oscillate up and down. This will allow land vegetation to flourish each time the level of carbon dioxide rises due to tectonic activity and animal life. However, the long term trend is for the plant life on land to die off altogether as most of the remaining carbon in the atmosphere becomes sequestered in the Earth. Some microbes are capable of photosynthesis at concentrations of CO
2 of a few parts per million, so these life forms would probably disappear only because of rising temperatures and the loss of the biosphere.
Plants—and, by extension, animals—could survive longer by evolving other strategies such as requiring less CO
2 for photosynthetic processes, becoming carnivorous, adapting to desiccation, or associating with fungi. These adaptations are likely to appear near the beginning of the moist greenhouse

The rate of weathering of silicate minerals will increase as rising temperatures speed up chemical processes. This in turn will decrease the level of carbon dioxide in the atmosphere, as these weathering processes convert carbon dioxide gas into solid carbonates. Within the next 600 million years from the present, the concentration of CO
2 will fall below the critical threshold needed to sustain C3 photosynthesis: about 50 parts per million. At this point, trees and forests in their current forms will no longer be able to survive, the last living trees being evergreen conifers. However, C4 carbon fixation can continue at much lower concentrations, down to above 10 parts per million. Thus plants using C4photosynthesis may be able to survive for at least 0.8 billion years and possibly as long as 1.2 billion years from now, after which rising temperatures will make the biosphere unsustainable. Currently, C4 plants represent about 5% of Earth's plant biomass and 1% of its known plant species. For example, about 50% of all grass species (Poaceae) use the C4 photosynthetic pathway, as do many species in the herbaceous family Amaranthaceae.

 In about 600 million years from now, the level of CO2 will fall below the level needed to sustain C3 carbon fixation photosynthesis used by trees. Some plants use the C4 carbon fixation method, allowing them to persist at CO
2 concentrations as low as 10 parts per million. However, the long-term trend is for plant life to die off altogether. The extinction of plants will be the demise of almost all animal life, since plants are the base of the food chain on Earth.

Added to timeline:

2 Jan 2018

Date:

feb 25, 600000000
Now
~ 5883516 years later