24 mar 2018 año - QAT: Quantization and training of neural
networks for efficient integer-arithmetic-only
inference, CVPR
Descripción:
QAT employs the affine mapping of integers to real values with two constant parameters: Scale and Zeropoint. It first subtracts the Zero-point parameter from data (weights/activation), then divides the data by scale parameter, and finally getting the quantized results with rounding operation and affine mapping.
Añadido al timeline:
fecha:
24 mar 2018 año
Ahora mismo
~ 7 years and 3 months ago